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Abstract

A new parallel algorithm, based on the Berger-Rigoutsos algorithm
for clustering grid points into logically rectangular regions, is presented.
The clustering operation is frequently performed in the dynamic gridding
steps of structured adaptive mesh refinement (SAMR) calculations. A
previous study revealed that although the cost of clustering is generally
insignificant for smaller problems run on relatively few processors, the
algorithm scaled inefficiently in parallel and its cost grows with problem
size. Hence, it can become significant for large scale problems run on very
large parallel machines, such as the new BlueGene system (which has
O(104) processors). We propose a new task-parallel algorithm designed
to reduce communication wait times. Performance was assessed using dy-
namic SAMR re-gridding operations on up to 16K processors of currently
available computers at Lawrence Livermore National Laboratory. The
new algorithm was shown to be up to an order of magnitude faster than
the baseline algorithm and had better scaling trends.

1 Introduction

Adaptive mesh refinement (AMR) is an approach for discretizing and solving
science and engineering problems on computational meshes. It is useful for
problems with localized fine-scale regions in the computational domain. By
placing the mesh points and computational efforts where they are needed most,
AMR can require significantly less computational resources than using uniformly
fine meshes. In a dynamic problem where solution features move and appear
or disappear, the AMR mesh changes to adapt to the changing features. Grid
points can be automatically inserted and removed where needed.
Structured AMR (SAMR) is an approach originally proposed by Berger,

Oliger, and Colella [BO84, BC89] that composes the adaptively refined mesh by
overlaying successively finer individual structured grids where higher resolution
is needed (figure 1). The mesh is composed of a sequence of levels, each having
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Figure 1: Simple 2D structured AMR mesh with three levels of refinement.
Shaded cells are those where finer grids are overlaid.

greater resolution than the previous. As shown in figure 1, fine grids are aligned
with coarse grid lines, meaning that coarse grid lines coincide with fine grid lines
at fixed intervals where the fine grid overlays the coarse grid.
The clustering algorithms described in this paper are used during the dy-

namic gridding steps in the SAMR implementation. SAMR mesh adaptivity
consists of first replacing the current level with an updated one and, second,
transferring data to the new level. Refinement consists of adding a finer level
to the hierarchy, overlaying the finest existing level. Each of these operations
builds new levels. Clustering generates the initial set of boxes from which to
build the new levels. The boxes are logically rectangular, defined by the indices
of its lower and upper corners.
To create a new level, the application must determine what regions the new

level should cover and generate the structured grids to cover them. A feature
detection scheme specific to the problem is commonly used to “tag” cells that
the new level should cover, e.g., it finds cells that contain large gradients or
numerical error. The clustering algorithm finds a set of boxes covering the
tagged cells and preferably few untagged cells. Each box is considered a cluster
of tagged cells. The set of boxes may be further processed (e.g., to enforce size
constraints). The grids in the new level is created directly from the final set of
boxes.
A common algorithm used in SAMR for the clustering step is the algorithm

proposed by Berger and Rigoutsos [BR91]. This algorithm is generally quite
fast and works well in serial and in parallel with moderate numbers of proces-
sors. However, its scaling properties can be poor, and it can be expensive for
large problems run on many processors [WHH03]. This paper describes a new
algorithm, based on that of [BR91] and intended to scale better on large parallel
computers.
It is important to note that clustering is only done when a new grid level is
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generated so that the frequency of grid adaptation affects the overall clustering
cost. For example, a problem with static adaptivity will only perform clustering
once to generate the initial refined grid. While it is possible to reduce the overall
clustering costs in a computation by reducing the frequency with which grids are
adapted, this approach introduces other overheads. For instance, the refinement
region must include extra buffer zones to assure dynamic features in the solution
do not move beyond the refined region between refinement steps. In this work
we focus on improving the efficiency and scalability of the clustering operation
itself, independent of how often it is applied.
The algorithms described are implemented in the SAMRAI framework [HK02,

SAM04] developed at Lawrence Livermore National Laboratory, though the con-
cepts we develop should apply to other SAMR implementations.
We review the Berger-Rigoutsos clustering algorithm in the next section.

Section 3 discusses the performance of current parallel versions of the algorithm
and motivates the need for improved efficiency. The new task-parallel algorithm
is described in section 4. Section 5 contains the performance results.

2 Previous Clustering Algorithms for SAMR

In 1991, Berger and Rigoutsos [BR91] considered a number of general varia-
tions of bottom-up and top-down clustering algorithms for SAMR. Bottom-up
variations start with seed points computed from the tagged-cell pattern and
build boxes around the seed points using variances of k-means partitioning al-
gorithm [And73, Har73]. The top-down algorithm places all tagged cells into
an initial single box then splits the initial and subsequent boxes to eventually
form the final set of boxes (see figure 2). These variations are forms of hierar-
chical clustering. Each hierarchical clustering corresponds to a tree, known as a
dendogram, with the initial grouping at the root and the final groupings at the
leaves [DH73] (see figure 3).
The best algorithm found in [BR91] was a top-down algorithm. The criteria

for whether and where to split a cluster are based on ideas from edge detection
algorithms [MH80], using signatures. Signatures for a d-dimensional box are
computed by projecting each tag to the d axes and summing the number of tags
at each point on the axes (see figure 2a). The signatures form one-dimensional
descriptions of the tag distribution in higher dimensional boxes.
Signatures are used to decide whether and where to split a candidate box in

the top-down algorithm, according to the following criteria:

1. A box is split if it does not meet a preset efficiency threshold. Efficiency
is defined as the ratio of the number of tagged cells in the box to all cells
in the box. It controls the degree of extra refinement in untagged regions.

2. The first preferred location to split a box is at a hole, or zero value, in a
signature.

3. If no hole is found in the signature, the next preferred cut location is at
an inflection point (zero-crossing of the second derivative) of a signature.
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Figure 2: A top-down hierarchical clustering example using the Berger-
Rigoutsos algorithm [BR91]. Tagged cells are marked by dots. a) Signatures,
bounding box and cut used by the Berger-Rigoutsos algorithm. Σ is the sig-
nature. ∆ is the undivided Laplacian of the signature. Heavy-lined box is the
bounding box of the clustered tags. Dashed line is the location of the cut based
on the inflection point criterion (see text). b) Resulting box clusters.
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Figure 3: Dendogram corresponding to the clustering example in figure 2. Node
0 is the initial cluster. Nodes 2, 3, and 4 comprise the final clusters.
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Figure 2a shows the second derivative of the signature approximated by
the undivided Laplacian ∆.

The top-down algorithm is outlined as follows in [BR91]:

Algorithm 2.1: BergerRigoutsos(boxes)

i← 1
while (i <number of boxes)

do















































if efficiency of box Bi <threshold

then































compute signatures
find the best place to split box Bi

if found a place to split

then

{

split box Bi in two
append new boxes to end of list boxes

else i← i+ 1 (go to next box)
else i← i+ 1 (consider next box)

If the efficiency threshold is set to 1, every new box constructed will contain
only tagged cells. While this may seem desirable, in practice it leads to con-
struction of many small boxes, a process that that introduces other overheads.
It is generally most efficient to set the threshold to something slightly less than 1
which reduces the number of boxes but includes some cells in the refined region
that were not originally tagged to be refined.
Rantakokko [Ran03] described a similarly structured top-down algorithm but

(optionally) with specific criteria for choosing the next box to split. Whereas
[BR91] equivalently chooses the next box from a breadth-first search of the
current dendogram leaves, [Ran03] chooses, from all current dendogram leaves,
the one that has the most untagged cells. Different criteria are also used to
determine the cutting plane, with the goal of minimizing the number of tagged
cells in the cutting plane.
SAMRAI uses a slight variation of algorithm 2.1, employing recursive func-

tion calls in place of a loop. Each recursion takes a single candidate box and
builds up a list of cluster boxes for the tags in the candidate box. If a candidate
box is split, the recursive function is called for the children boxes. This is equiv-
alent to using a depth-first search for the next candidate box to analyze, but it
yields the same set of boxes as algorithm 2.1 would. The SAMRAI clustering
algorithm is:
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Algorithm 2.2: RecursiveBergerRigoutsos(C, b)

comment:Compute a set of boxes C (the cluster), start-
ing with candidate box b

compute signatures of b
b←bounding box of tags in b
if efficiency(b) ≥ threshold
then C ← {b}

else















































split b in two to create boxes bL and bR
RecursiveBergerRigoutsos(CL, bL)
RecursiveBergerRigoutsos(CR, bR)

if







length(CL) > 1 or
length(CR) > 1 or
combined efficiency > β efficiency(b)

(i)

then C ← {CL, CR}
else C ← {b}

Algorithm 2.2 adds at statement (i) an additional step of checking the com-
bined efficiency of the boxes returned by the recursions. The combined efficiency
is defined as the ratio of tagged cells summed in the left and right boxes to the
sum total of cells in those boxes (this ratio is defined only if the left and right
boxes are not split). If the combined efficiency does not improve by the factor
β over the parent’s efficiency, the parent’s box is taken instead. The goal of
recombining is to avoid fragmented boxes if the potential gain in efficiency is
minimal. The recursive structure of algorithm 2.2 provides the parent-children
and sibling relationships needed for the check on combined efficiency. Such a
check may be more difficult to implement in algorithm 2.1, where the parent is
discarded when the children are created.
Although the structure of algorithms 2.1 and 2.2 differ slightly, the graph

of the flow of the implementation (i.e., the dendogram–see figure 3) is identical
for both. They use the same method to evaluate the candidate box and either
accept it or determine where to split it. This general method is applied to each
node (i.e., box) in the dendogram of the clustering. We refer to this general
method as the node routine herein. Since boxes and nodes have a one-to-one
correspondence, we use the terms interchangeably.

3 Parallel Performance of the Clustering Algo-

rithm

Clustering involves accumulating and operating on tagged cells from the entire
problem domain. Hence, its cost grows with problem size. For relatively small
problems, run on O(102) or fewer processors, clustering is usually quite fast and
its cost is generally negligible. However, as we move to larger scale problems
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run on many processors the cost becomes more significant. In [WHH03], a set
of benchmark adaptive problems run on up to 1024 processors shows that the
cost of clustering grows significantly with number of processors, even though
the problem size remains fixed. The increasing cost comes from the additional
communication required for the collective operations on the tagged cells. Be-
cause the cost of clustering increases with increasing problem size and increasing
number of processors, the combined effect of running large problems on large
numbers of processors can become a significant bottleneck.
Like most SAMR implementations [CGL+03, BB87, KB96, RBL+00], SAM-

RAI uses a domain decomposition single-program multiple-data (SPMD) paral-
lelization approach. Individual structured grids that form a level are distributed
to processors in such a way that the load is balanced. All data on a grid resides
on the processor that owns the grid. When clustering with this distributed data
model, the signature computation requires communication. This can be done
using standard global sum operations; partial signatures are computed using
the data local to each processor and the global signature is formed by summing
the contributions from all processors. Because computing a signature requires
numerous sums (one for each point on each axis) and many signatures are com-
puted during the clustering operation (a new signature must be computed for
each candidate box) many global sums will be performed, which can become
expensive.
A simple way in which the clustering can be implemented on a parallel sys-

tem is for each processor to compute a partial signature using just the tags
data that it owns. The standard collective function MPI Allreduce is used
to sum the partial signatures to compute the full signatures and return it to all
processors. With this call, every processor gets the sum data and can proceed
with the otherwise unchanged algorithm. An inefficiency in the use of global
sums is that it often involves much needless communication with processors that
do not hold data used in the full signature. The clustering algorithm initially
starts with a box that covers the entire domain, so every processor can poten-
tially have tag data to contribute to the initial signature. However, once this
initial box is split, tagged cell data on each of the sub-boxes can only come
from processors that hold data in the child-box region. As the recursion contin-
ues, the candidate boxes get smaller and smaller, and although fewer and fewer
processors are needed to compute the complete signature, each global sum still
requires messages from all processors. An alternative implementation that uses
a local signature reduction is presented in [WHH03]. The key feature in this
implementation is that it utilizes subsets of processors to perform the commu-
nication only among the processors that hold data required for the signature
computation. One processor is designated as a manager (e.g., processor zero)
and any processor that holds data on the particular box being processed is des-
ignated as a worker. A processor is considered a worker if the grids it owns
on the tagged level (the level where the cells are tagged) grids that overlap the
candidate box. The worker processors compute their local signatures and send
this information to the manager. The manager accumulates the results from
the workers, computes the global signature, decides whether and where to split
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the box, and sends the decision to the workers. A new set of worker processors
is designated for each of the sub-boxes, and the process is repeated. At the end
of the recursion the set of boxes computed by the manager is broadcast to all
processors.
From an algorithmic standpoint the global signature reduction and local

signature reduction implementations generate identical output sets of boxes.
Because less communication is required, the local reduction implementation
was found to be significantly faster on greater than O(102) processors.
In spite of the performance gains from using local signature reduction, the

algorithm is still limited in its scalability for two reasons. First, the slowest part
of this algorithm is the communication, which tends to worsen instead of improve
as the number of processors increases. Second, it still relies on a single manager
processor that synchronously coordinates contributions from multiple worker
processors. In order to effectively scale on systems with O(105) processors we
need to pursue alternative implementations.

4 Task-parallel Clustering Algorithm

Algorithms 2.1 and 2.2 described in section 3 follow a SPMD (or data-parallel)
model. Operations on distributed data (computing local signatures, for in-
stance) were parallelized, but operations on collective data (the full signatures,
group formations, etc.) remained sequential. Therefore, the overall algorithm
retained sequential logic. The top-down hierarchical approach opened an oppor-
tunity to integrate task-parallelism into the logic. After a box was split, the left
and right branches formed tasks that were mutually independent, because the
decisions for one box is completely independent on the decisions for the other.
In figure 3 for instance, nodes 1 and 2 were mutually independent, as were nodes
3 and 4. If node 1 was split before node 2 was completed, then nodes 2, 3 and
4 were all mutually independent. It was possible to work on the independent
nodes concurrently rather than sequentially1 as was done in algorithms 2.1 and
2.2.
In the task-parallel approach, each instance of the node routine made a

natural task. Each task was data-parallel, requiring communication within the
group of processors holding data for the box. We could significantly reduce the
overall time spent waiting on communication by switching to another task when
the current task is waiting. We use task and node interchangeably, because there
is a one-to-one correspondence between them.
To have concurrent tasks, we must know which are independent. Sibling

tasks were independent because the decisions on one box did not affect the
sibling box. However, parents and their children were not independent. A child
task was dependent on its parent because the child could not be created until

1Although it was tempting to partition the computer to work on the left and right branches
in parallel, this did not appear to be feasible because (1) branching and the location of the
cut was not known a priori and (2) some processors might still have to participate in both
branches.
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the parent is split. A parent task depended on the results of its children so it
can perform the combined efficiency check. At any point in the above top-down
clustering algorithms, nodes that have no children, and whose children have all
completed running, are independent and can proceed concurrently. Nodes with
active children are dependent on the results of all its children and must wait
until they are finished.
Concurrent tasks could be performed in a manner similar to multi-threading,

where each task corresponded to one thread. Task switching was implemented
by exiting one task at some point in the node routine and starting (or restarting)
a different task.
In the rest of this section, we describe a mechanism for exiting a task before

it completes, a mechanism for selecting which task to run and further details
about the implementation.
To exit a task before it completes, we implemented a self-suspending node

routine by building in logic for suspending the routine and returning to where it
left off. The node routine suspended itself by storing its state in a data structure
and exiting. When the node routine was restarted, it jumped to the point where
it was suspended, using the stored information. We chose places where the
processor had to wait as points where the node routine would suspend itself.
The node routine could be viewed as a sequence of alternating local computation
and wait phases, much like other SPMD applications. A node might wait for its
communications or for its children to complete. (Communications in each node
routine must be initiated by non-blocking calls so that the task is not forced
to wait for the communication to finish.) Algorithm 4.1 illustrates the general
logic for implementing the self-suspending node routine.
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Algorithm 4.1: SelfSuspendingNodeRoutine(node)

comment: node is a data structure containing data associated
with a particular dendogram node. This data in-
cludes the state of the node routine when it was sus-
pended.

if starting routine
then go to 0 (i)

if reducing signatures
then go to 1 (ii)

if ...
then go to ...

0: (iii)
compute local signatures for node
initiate sum-reduce operation for signatures
1: (iv)
if sum-reduce is incomplete

then

{

PutInTaskManager(node) (v)
return

box←bounding box of tags
...
return

The “go to” statement (i) directs the routine to the label at statement (iii),
similarly for statements (ii) and (iv). At statement (v), where the node routine
would return before it completes, it places itself back in the task manager for
restarting at a later time.
The node routines were driven to completion by a task manager, which was

essentially a user-space thread controller, specialized for tasks that had distinct
computation and wait phases. The role of the task manager was to keep track of
waiting tasks and eventually restarting them. When a node routine suspended
itself, it returned control to the task manager which picked the next task to start
(or restart). Many concurrent tasks could exist in the task manager, and each
time a node is split, two more tasks are generated. The manager was responsible
for allowing all tasks to run in turn. The algorithm is completed when no more
tasks are in the manager
A simple manager could be built around a queue, Q, of unfinished tasks, as

shown in algorithm 4.2. This manager takes the first task from the queue and
restarts it. If the node routine suspended itself before completing, as described
in algorithm 4.1, it would have placed itself back in the queue to be restarted
at a later time. The task manager would call SelfSuspendingNodeRoutine

on each node as many times as it takes to complete it.
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Algorithm 4.2: QueueTaskManager(Q)

comment:Q is a queue (list) of tasks.

while length(Q) > 0

do























node← Dequeue(Q)
SelfSuspendingNodeRoutine(node)
comment: If node did not complete, it would have been

put back in the queue by the self-suspending
node routine of algorithm 4.1.

The queue would start with the root node of the dendogram. Though not
explicitly shown in algorithm 4.1, children nodes were placed in the manager as
they are generated rather than recursively entered by their parents as is done
in algorithm 2.2. The queue task manager is loosely similar to the outer loop of
algorithm 2.1. A more sophisticated task manager is described in section 4.2.
In addition to the groups of processors that participate in evaluating a given

node, we chose from the node’s participating group an owner processor. The
owner became the root of communications in the group, getting collective data
from the group, making decisions based on the collective data and sending the
decisions back to the group. In [WHH03], a single processor (e.g., processor id 0)
participates in all groups and is the designated owner of every group. We called
this the single-owner mode. By choosing different owners, we could relieve the
bottleneck (both computation and communication) that occurs at the single
owner processor. Choosing different different owners leads to the multi-owner
mode. (Our “owner” corresponds to the “manager” in [WHH03]. We use the
term “owner” to avoid confusion with the task manager.)
Other algorithms in SAMRAI required that the full output (the accumulated

results from all node routines) be given to all processors, requiring a collective
communication after all node routines complete. At the end of each node rou-
tine, only the owner had the final box. In algorithm 2.2 and in the single-owner
mode of the new algorithm, one processor has all the output and only needs
to broadcast it at the end of the clustering step. One issue that arises in the
multi-owner mode is that clustering results were distributed over the multiple
owners. Getting this output to all processors required an all-gather commu-
nication, which is slower than the simple broadcast used in the single-owner
mode.
Some additional data must be stored for the implementation of the task-

parallel algorithm. In the node data structure of algorithm 4.1, the state of the
node (its box, its group, its owner, where the routine left off, etc.) was saved so
that the node could be restarted as if it had not been interrupted. We added
references to parent and children and data supporting communications to this
data structure. The references to a node’s parent and children were used to put
parents and children into the task manager, check on their states, etc. Data
supporting communication included those for of a tree-based collective commu-
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nication scheme, similar to that described in [WHH03]. While it is possible to
use MPI communication groups for collective communication, we determined in
[WHH03] that collective communications using the tree were more efficient than
creating an MPI communicator for each of the many groups. In the tree-based
scheme, each processor in a group is assigned a node on the tree, with the owner
processor at the root. Broadcasts from the root sent the messages toward the
leaves. Reductions and gathers sent the messages toward the root. We explicitly
implemented a balanced tree, in contrast to [WHH03], where balanced trees are
not assured.
To support the multi-owner mode, an additional communication step was

required in the node routine. For each node we defined the dropout group as
the set of processors that participated in the node’s parent but not in the node
itself (because they do not hold any data for the node’s box). In the multi-owner
mode, the owner for each node broadcasts the node’s final result to the node’s
dropout group. Although processors in the dropout group did not participate in
evaluating a child node, they needed the node’s final results in order to perform
the combined efficiency check for the node’s parent.

4.1 Task-parallel Node Routine

In this section we fill in more detail about the node routine for the task-parallel
algorithm. For readability, we omit the details of suspending and restarting,
which were already shown in algorithm 4.1.
The new node routine is shown in algorithm 4.3. Functions attributable to a

node use the node’s internal data and were written using the node’s dot (.) op-
erator borrowed from C++ syntax. For example, node.Box() returned the box
of the node, node.Overlap() returned amount of overlap between the candidate
box and local grids on the tagged level, and node.ComputeLocalSignatures()
computed and stored the node’s local signatures from the local tag data.
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Algorithm 4.3: TaskParallelNodeRoutine(node)

if node.Overlap() > 0 (i)

then























































































node.ComputeLocalSignatures()
node.SumReduceSignatures()
if node.Owner() = local process rank

then

{

node.Box()← bounding box of tags
node.AcceptOrSplit()

node.BroadcastAcceptability()
if node.Acceptability() = false (ii)

then































node.CreateChildren()
node.FormChildGroupsAndOwners()
PutInTaskManager(node.LeftChild())
PutInTaskManager(node.RightChild())
node.WaitForChildren() (iii)
node.CheckCombinedEfficiency()

comment:Owner broadcasts results to dropout group.
(See text.)

if

{

node.Owner() = local process id or

node.Overlap() = 0
(iv)

then
{

node.BroadcastToDropouts()

comment:After last child completes,
parent may continue.

if node.Parent() 6= 0 and node.Sibling() is completed
then PutInTaskManager(node.Parent()) (v)

return ()

In algorithm 4.3, the if-block at line (i) was executed by the participating
group and largely followed the steps in algorithms 2.1 and 2.2. The processors
computed their local signatures and and sum the signatures on the owner pro-
cessor. The owner decided to accept or split the candidate box and broadcast
the decision to the participating group (along with candidate boxes for children,
if needed). If the box was not accepted, line (ii), the routine created children
nodes and computed their groups. To select the owner, we chose the processor
with the greatest overlap with the candidate box. The children were placed in
the task manager so their node routines can eventually be run.
After putting the children in the task manager, the node must wait for them

to finish. The functionWaitForChildren called at (iii) was a wait similar but
not identical to those caused by communications. The operational difference was
that the node was not immediately put in the task manager. It was put there
only after its last child finishes, at line (v). Differentiating communication waits
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from children waits prevented a parent node from being unnecessarily checked
until all its children are completed. When the parent continued, the method
CheckCombinedEfficiency performed the same combined efficiency check
done by algorithm 2.2 to see if the efficiency of the children warrants keeping
them over their parent.
The middle block, line (iv), in algorithm 4.3 was entered by the node’s

owner and the dropout group. As discussed above, a child’s dropout group
contains those processors that participated in the parent’s computation but
do not participate in the child’s. In BroadcastToNonOverlapGroup, the
owner broadcasts the results of the participating group to the dropout-group.
This step assures that the node results were available on all processors so that
the parent of the node could perform the combined efficiency check.

4.2 Task Manager Algorithm

Some latitude existed in how the task manager selected the next task to check
and, possibly, to restart. The simple queue task manager (algorithm 4.2) was
inefficient as it went through an enormous number of cycles before finding a
node with completed communications, consuming CPU cycles while making no
progress. Instead of cycling through all waiting nodes, we would like to select
those nodes that can make immediate progress. Only when these are exhausted
would we wait on communications.
To quickly find nodes that can make immediate progress, we treated them

differently from other tasks. We made queue-based task manager the first stage
in a two-stage approach. The queue accepted only tasks that could make im-
mediate progress. These were new tasks and tasks whose children had just
completed. They were explicitly placed on the queue by their parent or child.
Tasks that were waiting for communication were processed by a second stage
that is entered when the queue is empty. Tasks waiting for communication were
referenced through their MPI Request objects, by mapping the requests back
to the tasks. (MPI Request objects are handles, returned by MPI, that refer to
specific outstanding communication requests.) When a communication request
completes, the task waiting for it were identified using the map and restarted.
Communication waits were handled byMPI Waitsome and invoked only when
there were no more tasks that could make immediate progress, which effectively
was when the queue was empty. We note that parent tasks waiting for their
children to complete were left out of the two-stage task manager. We relied on
children tasks to put their parent back into the manager when they completed
(see algorithm 4.3).
Implementation of the two-stage task manager required storing a queue of

tasks, an array of MPI Request objects, and a mapping from the request ob-
jects to the tasks waiting for them. The array of request objects were input to
MPI Waitsome to get the next set of MPI communications that have com-
pleted. The algorithm follows:
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Algorithm 4.4: TwoStageTaskManager()

while

{

There are tasks in the queue or

there are incomplete communications

do







Restart all tasks in the queue until the queue is empty
Wait for some communication calls to finish
Restart tasks corresponding to completed communications

The outermost loop in algorithm 4.4 was required because as it executes,
more tasks might be added to the queue and more communication operations
might be launched.

5 Results

We evaluated the performance of the task-parallel top-down algorithm for a
representative moving-grid simulation. Calculations are performed on up to 16K
processors on four different parallel computer systems. Details of the problem,
a description of the parallel systems, and timing results are presented in the
remaining sub-sections.

5.1 Problem description

Performance is measured for clustering a 3D sinusoidal tagged cell distribution
that advects through the domain (see figure 5.1). This problem does not perform
a physics calculation but is representative of a geometrically complex shock wave
moving through a domain. We leave out the physics to isolate the performance
of the clustering operation alone. The grid domain size is 24x16x16 cells on the
coarsest level. In physical space, the domain is a right hexahedron with a corner
at (0,0,0) and the opposite corner at (3,2,2). The front is initially centered at
(0.5, 0, 0) and moved (0.02, 0.005, 0.005) each time step. The hierarchy has 4
levels, with a refinement ratio of 2 for each level. The sinusoidal front moves
through the domain at the above fixed velocity and the grids around it are re-
generated from tagged cells five times. The problem size remains fixed with the
number of processors. Multiple timings are done on each processor partition
and the results presented are average times taken from several runs.

5.2 Parallel Systems

We present the results on the three current LLNL production parallel platforms
and the new BlueGene/Light (BG/L) system. All are distributed memory paral-
lel, with modest shared memory parallelism. Table 5.2 shows the characteristics
of the platforms. The “Max number of processors” shown in table 5.2 were the
numbers available for the experiments, not the absolute maximum on the plat-
forms. Although the BG/L system would eventually have 64K processors, the
full machine was not yet fully constructed, so only 16K processors were available.
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Tagged cells.

Patches generated around the tagged cells.

Figure 4: Sinusoidal front test problem.

Max CPUs per
Machine Processor number of computing Network
name Model type processors node type
Frost IBM 375 MHz 256 16 SP switch

SP2 Power 3
MCR Linux 2.4 GHz 2048 2 Quadrics

cluster Xeon QsNet
Thunder Linux 1.4 GHz 2048 4 Quadrics

cluster Itanium 2 QsNet
BG/L Linux 700 MHz 16K 2 3D

cluster PPC 400 Torus

Table 1: Computers used to evaluate task-parallel algorithm.
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5.3 Timing Results

During testing of the task-parallel algorithm we experimented with a number of
different options and settled on four primary “modes” for which the algorithm
showed interesting or optimal performance under different circumstances on
different systems. These four modes were designated as:

• Baseline - the baseline mode used the implementation of algorithm 2.2
in section 2.

• Balanced-tree Synchronous - algorithmically identical to the “base-
line” mode but used balanced trees for group communications. Two com-
munication phases were completed in each task, 1) to reduce the signa-
tures, and 2) to broadcast the acceptance. A single manager processor
coordinated the algorithm and broadcasted the result at completion.

• Single-owner Task-parallel - task parallel implementation with a sin-
gle owner. Like the synchronous mode, this used the same processor to
accumulate the results from each group of processors operating on a node.
Unlike the synchronous case, however, this mode used the node routine
suspension to minimize time spent waiting for the communications. Like
the “balanced-tree synchronous” mode, this mode required two communi-
cation phases per task and a single broadcast at the end to globalize the
output.

• Multi-owner Task-parallel - task parallel implementation with multiple
owners. This mode required one additional communication at each task
(totaling three) to broadcast results to the dropout group of processors.
After clustering, an all-gather communication was done to globalize the
output. Although the node routines incurred one extra communication
step per task and the slower all-gather at the end, the better load balance
of the extra work done by owners sometimes made up for the additional
cost.

Figure 5 shows the clustering times for the baseline and new task-parallel
algorithms applied to the moving sinusoidal front problem run on various proces-
sor configurations of the four platforms tested. All timings shown were the max-
imum across all processors. The “baseline” algorithm 2.2 tested in [WHH03],
clearly scaled poorly beyond 128 processors on all three platforms. On the IBM
SP system, the “multi-owner task-parallel” mode was clearly fastest, whereas
on the two Linux cluster systems, the “single-owner task-parallel” mode was
fastest. It should be noted that on the Linux systems the synchronous algo-
rithm using the balanced tree communication scheme was considerably faster
than the similar baseline algorithm which did not use balanced trees, implying
that use of smarter communication strategies could significantly enhance the
performance of the synchronous approach. The task-parallel algorithms scaled
well and trends seemed to indicate they will continue to scale beyond the 16K
processors tested.
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Figure 5: Clustering cost for advecting sinusoidal front problem. The line desig-
nated “baseline” is the implementation of reference [WHH03], while the others
are three different modes of the new implementation.

Figure 6 breaks down the timings into the cost of clustering alone, and the
cost of globalizing (accumulating and distributing) the results from all owners
so all clustered boxes are known globally, by every processor. The “multi-owner
task-parallel” mode is fastest for clustering alone on all four systems, but it
required additional communication to gather the results among the multiple
owners. The “single-owner task-parallel” mode maintained the result of each
group on a single processor and avoided the more expensive all-gather communi-
cation. Table 2 shows the increase in speed of the task-parallel modes

relative to the baseline algorithm. If clustering and globalization are

counted together, the single-owner mode is fastest and results in an

increase in speed over the baseline algorithm by a factor of 3.4 to 9.5

at the highest number of processors on each platform. If we consider

only the clustering step, without the globalizing step, the multi-owner

mode is fastest and results in a 6.3- to 25-fold increase over the base-

line. Hence, the multi-owner mode is most efficient for clustering alone but
the single owner case is fastest overall (figure 5), if the global set of boxes has to
be distributed to every processor. The reason we make this distinction is that
we are investigating approaches that would avoid having to make the global set
of clustered boxes known globally and in this case the multi-owner approach
may be more efficient.
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Clustering time Globalizing time

Figure 6: Isolated costs for the clustering (left column) and globally distributing
the clustered results to all processors (right column). Globalizing times rises
much faster than clustering time. The “multi-owner” task-parallel algorithm
requires the least time for clustering on all four systems but requires additional
costs for accumulating and distributing the results to all processors, because an
all-gather is required among the multiple owners. The total times, clustering
plus global accumulation and distribution, are shown in figure 5.
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Machine and number of processors
Algorithm Task-parallel Frost BG/L MCR Thunder
steps Mode 256 16K 2K 2K

Cluster and Single-owner 1.6 3.4? 9.5? 8.0?
globalize Multi-owner 5.4? 0.9 1.1 2.6
Cluster Single-owner 1.7 3.9 9.8 7.8
only Multi-owner 14† 6.3† 13† 25†

Table 2: Speed-up factors for the task-parallel clustering algorithm on the
largest number of processors of each platform, relative to the the speed of the
baseline algorithm. The fastest cluster-and-globalize times are marked by a
“?”, and the fastest cluster-only times are marked by a “†”. Note that the
multi-owner mode was fastest on all systems when only clustering times were
considered. The single-owner mode is fastest for most systems when both clus-
tering and globalization are considered.

Note that the total times shown in figure 6 tend to be less than the sum
of the two parts–clustering plus the globalization, shown in figure 5–because
no explicit synchronization was performed between the two parts. Globalizing
time may include time waiting for other processors to complete the clustering
step. We are measuring maximum times (across all processors), and different
quantities are at a maximum on different processors.
We next investigated the relative efficiency of the different approaches by

breaking down, from the task manager’s point of view, the time spent computing
and the time spent waiting on messages. Computing generally consisted of
computing the local signature, deciding whether and where to split a box, and
determining groups and owners. Waiting from the task manager’s point of
view, meant waiting on communication, without a possibility of doing useful
computation. (Wait time does not include waiting for children, as that time
would include computing in the children tasks.) Figure 7 shows the computing
and waiting times for the different modes. The multi-owner task-parallel mode
was significantly faster than the other modes, both for computation and wait.
This indicated the effectiveness of the work distribution approach used by the
multi-owner mode. The single-owner modes spent equal time computing, as
expected, because the most time spend computing is usually found on the single
owner. However, the task-parallel “single-owner” mode spent about two-thirds
less time waiting.
Overall, we found the the cost of clustering and the wait times for the new

task-parallel algorithm, particularly the multi-owner case, scaled well. The im-
posed requirement that all processors know the resulting set of clustered boxes
introduced a globalization step which is the main source of performance degra-
dation for large numbers of processors. This requirement may be relaxed in
the future as new approaches are developed that operate in a more localized
manner.
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Compute time Wait time

Figure 7: Time spent computing (left column) and waiting (right column) by
the task manager during the clustering algorithm. The task manager time is
the time to run the clustering algorithm; it does not include the globalization
communication, which occurs after the clustering step. Although the “baseline”
mode does not use a task manager, it has distinct computing and waiting phases
that are equivalent to the task manager phases.

22



6 Summary

We presented a new task-parallel algorithm, based on the sequential top-down
hierarchical clustering algorithm of Berger and Rigoutsos [BR91], which is com-
monly used to cluster cells in structured AMR calculations. The primary ad-
vantage of the new approach was that it generated many independent tasks
that could be performed concurrently. Exploiting this on a parallel computer
system resulted in better scalability of the algorithm on large-scale parallel plat-
forms. We compared the performance of the new algorithm to a previous parallel
clustering algorithm on several current parallel platforms, including up to 16K
processors of the BlueGene/Light system. The new algorithm showed overall
speed-up factors of 3.4 to 9.5 over the baseline algorithm.
The new algorithm achieved a high degree of parallelism by setting up inde-

pendent thread-like tasks. Each task was itself an SPMD method, performing
alternating computations and communications to generate a subset of the final
output. Speed-up was attained by exploiting task-parallelism and overlapping
the communications and computations of concurrent tasks. A task manager
selected which task to work on, based on whether or not the task had all the
information it needed to continue.
The algorithm was implemented within the much larger SAMRAI library.

For the purposes of other grid generation steps, SAMRAI requires the boxes
resulting from clustering to be known globally by every processor. Commu-
nicating the output boxes to all processors was a separate step that did not
scale as well as the clustering step, especially when the clustering output was
distributed over multiple processors.
The clustering operations in the new algorithm were most efficient when the

workload was distributed over multiple processors, the so-called multi-owner
mode. However, when run this way the result was distributed over the mul-
tiple processors requiring an all-gather communication to put the result on all
processors. This all-gather step could be expensive. An alternative implemen-
tation created all the output on a single processor. In this case, the workload
was not as well balanced, so the cost of the clustering operations increased, but
the all-gather required in the multi-owner mode could be replaced by a sim-
ple broadcast so the globalization step is faster. Although the multiple-owner
mode was the fastest clustering mode in our tests, when counting the globalizing
step, the single-owner mode was usually faster. If other algorithms in SAMRAI
could be reconfigured to avoid the globalization requirement, the multiple-owner
implementation would be a faster alternative.
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